Two Higgs Doublets from Fourth Generation Condensation

Gustavo Burdman

University of São Paulo

With Carlos Haluch, , arxiv:1109.xxxx

Outline

Introduction and Motivation

Is a Fourth Generation still allowed? What is it good for?

Two Higgs Doublet Model from Fermion Condensation

Effective Theory

Scalar Spectrum

Phenomenology

Conclusions

Is a Fourth Generation Still Viable?

Higgs must either be:

- ► Light $m_h < 120 \text{ GeV}$
- Heavy $m_h > 600 \text{ GeV}$

Heavy quarks must be $m_{t'} > 450$ GeV, $m_{b'} > 400$ GeV

Possible Ways Out

- ▶ Dynamical explanation for $m_h > 600$ GeV
 - $lackbox{Fermion Condensation with low cutoff}
 ightarrow Heavy Higgs/No Higgs$
 - ▶ One Higgs doublet always $m_h > 700 \text{ GeV}$
- More complicated scalar sector
 - ightharpoonup Fermion condensation ightarrow Two-Higgs doublets at low energy
 - (Mostly) heavy scalar spectrum with different $\sigma \times BR$

Why a Fourth Generation?

Heavy Chiral Fermions: strongly coupled to EWSB sector

► Top quark:

$$m_t \simeq v \qquad \Rightarrow \qquad y_t \sim 1$$

▶ If Heavy Fourth Generation $\Rightarrow y_4 > 1$

Higgs sector is strongly coupled

Natural to assume composite Higgs sector

Why a Fourth Generation ?

Other motivation: (Holdom, Hou, Hurth, Mangano, Sultanasoy, Unel '09)

- New CP violation source for baryon asymmetry
- New sources of CPV in meson decays
- **.** . . .

Electroweak Symmetry Breaking

Composite EWSB Sector:

► Technicolor: Asymptotically free, unbroken gauge interaction

$$\Rightarrow \langle \bar{F}_L F_R \rangle \neq 0 \qquad \Rightarrow \text{EWSB}$$

F's are confined fermions, just as quarks in QCD.

 \blacktriangleright Alternative: gauge interaction spontaneously broken at $\uplus_{\sim} 1 \text{ TeV}$

 \Rightarrow F's un-confined heavy fermions with EW quantum #'s (E.g. Bardeen, Hill, Lindner '90, Hill '91)

EWSB from Fourth Generation Condensation

Ingredients:

- ► A Chiral Fourth Generation: Q₄, U_{4R}, D_{4R}, L₄, E_{4R}, N_{4R}
- ▶ New strong interaction at the O(1) TeV scale:
 - ▶ E.g. Broken gauge symmetry $M \sim TeV$
 - Strongly coupled to 4th gen. $\Rightarrow \langle \bar{F}_4 F_4 \rangle \neq 0$ $\Rightarrow m_4 \simeq (500 - 600) \text{ GeV}$
- ▶ Other fermion masses: higher dimensional operators like

$$\frac{x_{ij}}{\Lambda^2} \bar{f}_L^i f_R^j \bar{U}_R U_L$$

Models of Fourth Generation Condensation

All ingredients present in AdS₅

(GB, Da Rold '07, GB, Da Rold, Matheus '09)

Extra dimensional theories in compact AdS_5 dual to strongly coupled theories in 4D:

- Naturally results in strongly coupled heavy fermions
- ▶ Higher-dimensional operators among light fermions suppressed by large UV scale ∧
- ▶ Build gauge theory in AdS₅ with one extra chiral generation and no Higgs .
- Minimal model: Only up-type 4G quark condenses
 - \Rightarrow Only 1 Higgs doublet, $m_h \gtrsim 700 \text{ GeV}$

Models of Fourth Generation Condensation

- More general and more natural: both up and down type quarks condense
- More natural: interaction must be nearly isospin invariant to avoid *T* parameter constraints
- More general: would need to fine tune interaction to avoid one condensation
- ▶ ⇒ Two Higgs doublets at low energy

A Two Higgs Doublet from Fermion Condensation

(Luty '90, Luty, Hill, Paschos '90, GB, Haluch '11)

New fermions

$$Q^i = \left(\begin{array}{c} U^i \\ D^i \end{array}\right)_L, \quad U^i, D^i$$

with *i* gauge index of new interaction.

New Strong Interaction:

- ▶ Want un-confined fermions ⇒ spontaneosly broken at scale M
- ▶ Massive bosons strongly coupled to Q^i , U^i and D^i
- ▶ E.g. If G^a color-octect $\Rightarrow i = (1-3)$ is color index, Q^i , U^i and D^i can be fourth-generation quarks

Electroweak Symmetry Breaking

New strong interactions \Rightarrow four-fermion operators

$$\mathcal{L}_{4\mathrm{f}} = \frac{g_L g_u}{M_G^2} \bar{Q} U \bar{U} Q + \frac{g_L g_d}{M_G^2} \bar{Q} D \bar{D} Q$$

with g_L , g_u , g_d gauge couplings. If

$$g_L g_U > rac{8\pi^2}{N_c} \Rightarrow \langle \bar{Q}U \rangle \neq 0$$
 $g_L g_d > rac{8\pi^2}{N_c} \Rightarrow \langle \bar{Q}D \rangle \neq 0$

One doublet condensing $\Rightarrow SU(2)_L \times U(1)_Y \rightarrow U(1)_{EM}$

EWSB and Low Energy Scalar Spectrum

Four-fermion interactions \(\leftarrow\) Yukawa interactions

$$\mathcal{L}_{\text{eff.}} = Y_U(\bar{Q}\tilde{\Phi}_U U + \text{h.c.}) + Y_D(\bar{Q}\Phi_D D + \text{h.c.}) -M_G^2 \Phi_U^{\dagger} \Phi_U - M_G^2 \Phi_D^{\dagger} \Phi_D$$

with

$$Y_U^2 = g_L g_u, \qquad Y_D^2 = g_L g_d, \qquad \tilde{\Phi}_U = -i\sigma_2 \Phi_U^*$$

with hypercharges $h_U = -1/2$, $h_d = 1/2$.

EWSB and Low Energy Scalar Spectrum

At $\mu < M_G$:

Scalars develop kinetic terms

$$\mathcal{L}_{\mathrm{kin.}} = Z_{\Phi_U}(\mu)(D_\mu \Phi_U)^\dagger D^\mu \Phi_U + Z_{\Phi_D}(\mu)(D_\mu \Phi_D)^\dagger D^\mu \Phi_D$$

with the compositness BCs $Z_{\Phi_U}(M_G)$, $Z_{\Phi_D}(M_G) = 0$.

▶ They get VEVs if four-fermion couplings super-critical:

$$\langle QU \rangle \neq 0 \leftrightarrow \langle \Phi_U \rangle \neq 0$$
$$\langle QD \rangle \neq 0 \leftrightarrow \langle \Phi_D \rangle \neq 0$$

Effective Two-Higgs doublet spectrum at low energy

Low Energy Scalar Spectrum

At $\mu < M_G$ all couplings get renormalized and some generated. E.g. :

$$Y_U o rac{Y_U}{\sqrt{Z_{\Phi_U}}}, \qquad Y_D o rac{Y_D}{\sqrt{Z_{\Phi_D}}}$$

$$\mu_U^2 = M_G^2 - rac{g_L g_u N_g}{8\pi^2} \left(M_G^2 - \mu^2\right)$$

$$\mu_D^2 = M_G^2 - rac{g_L g_d N_g}{8\pi^2} \left(M_G^2 - \mu^2\right)$$

We calse that $m_U^2 < 0$ and $m_D^2 < 0$ for super-critical couplings $\Rightarrow V(\Phi_U, \Phi_D)$ with $\langle \Phi_U \rangle = v_U, \langle \Phi_D \rangle = v_D$

$\Phi_U - \Phi_D$ Mixing and Peccei-Quinn Symmetry

Theory is invariant under

$$Q o e^{-i heta} Q \qquad U o e^{i heta} U \qquad D o e^{i heta} D$$
 $\Phi_U o e^{2i heta} \Phi_U \qquad \Phi_D o e^{-2i heta} \Phi_D \; ,$

forbids mixing term $\mu_{UD}^2(\Phi_U^{\dagger}\Phi_D + h.c.)$ in $V(\Phi_U, \Phi_D)$.

This results in $M_A = 0$

Instantons Induce M_A

Fermionic equivalent of mixing term

$$\mathcal{L}_{\mathrm{mix}} = G_{UD}(\bar{Q}D\bar{U}^c\tilde{Q} + \mathrm{h.c.}) \;, \qquad (\tilde{Q} = -i\sigma_2 Q)$$

But this is generated by 't Hooft fermion determinant (Hill '95)

$$\mathcal{L}_{inst.} = \frac{k}{M_G^2} \mathbf{det} \left[\bar{Q}_L Q_R \right]$$

with $k \sim O(1)$.

 \Rightarrow Instantons of new strong interactions responsible for M_A

Scalar Spectrum

Scalar potential generated by fermion loops

$$V(\Phi_{U}, \Phi_{D}) = \mu_{U}^{2} |\Phi_{U}|^{2} + \mu_{D}^{2} |\Phi_{D}|^{2} + \mu_{UD}^{2} (\Phi_{U}^{\dagger} \Phi_{D} + \text{h.c.}) + \frac{\lambda_{1}}{2} |\Phi_{U}|^{4} + \frac{\lambda_{2}}{2} |\Phi_{D}|^{4} + \lambda_{3} |\Phi_{U}|^{2} |\Phi_{D}|^{2} + \lambda_{4} |\Phi_{U}^{\dagger} \Phi_{D}|^{2}$$

Couplings Y_U , Y_D , λ_i , μ_U , μ_D , μ_{UD} run down by using RGEs

 \Rightarrow scalar spectrum

Running to Low Energies

Solutions for $\lambda_1(\mu)$ for $M_G = 2, 3, 4$ TeV

Scalar Spectrum

$$A = \sqrt{2} \left(Im[\Phi_D^0] \cos \beta - Im[\Phi_U^0] \sin \beta \right)$$

$$h = \sqrt{2} \left(-Re[\Phi_U^0] \sin \gamma + Re[\Phi_D^0] \cos \gamma \right]$$

$$H = \sqrt{2} \left(Re[\Phi_U^0] \cos \gamma + Re[\Phi_D^0] \sin \gamma \right]$$

$$H^{\pm} = \Phi_D^{\pm} \cos \beta - \Phi_U^{\pm} \sin \beta$$

$$\tan \beta = v_U/v_D \simeq 1$$
. The CP-even mixing is

$$\tan 2\gamma = \frac{\mu_{UD}^2 + (\lambda_3 + \lambda_4)v^2 \sin 2\beta/2}{\mu_{UD}^2 + \lambda_4 v^2 \cos 2\beta/2}$$

Scalar Masses

E.g.: Pseudo-scalar mass

$$\mu_{\mathit{UD}}^2 = \frac{k \ v^2}{2 \mathit{M}_{\mathit{G}}^2} \frac{\lambda_1 \lambda_2 \cos^2 \beta \sin^2 \beta}{\left[1 - k v^2 (\lambda_1 \cos^2 \beta \cot \beta + \lambda_2 \sin^2 \beta \tan \beta)/(2 \mathit{M}_{\mathit{G}}^2)\right]}$$

and the pseudo-scalar mass is

$$M_A^2 = -2\frac{\mu_{UD}^2}{\sin 2\beta}$$

Scalar Masses

For
$$k = (0.1 - 1)$$

	$M_G = 2 \text{ TeV}$	$M_G = 3 \text{ TeV}$	$M_G = 4 \text{ TeV}$
M_A	(26-118) GeV	(15-59) GeV	(10-39) GeV
M_h	(548-580) GeV	(459-467) GeV	(422-425) GeV
M_H	(651-732) GeV	(530-537) GeV	(482-585) GeV
$M_{H^{\pm}}$	(603-719) GeV	(495-512) GeV	(453-459) GeV

- ► Heavy $(h, H, H^{\pm}) \simeq (400 700)$ GeV depending on (k, M_G)
- ▶ Light $A \simeq (10-120)$ GeV

Phenomenology

▶ Usual *h*, *H* decay channels suppressed in favor of *AA*, *A*, *Z*

- ▶ If condensing fermions carry color (4G quarks) \rightarrow $\sigma_{\mathrm{prod.}}(gg \rightarrow (h, H, A)) \simeq (6-7)$ SM values
- ▶ If new fermion colorless, no enhancement of $\sigma_{\rm prod.}$. But scalar spectrum still same.

Electroweak Precision Constraints

Constraints in the S-T plot (68% and 95% C.L. contours Parameter space of scalar sector (k, M_G) + fourth generation

Flavor

 Dynamics at the high scale introduce higher dimensional operators such as

$$\frac{x_{ij}}{\Lambda^2} \ \bar{f}_L^i f_R^j \ \bar{U}_R U_L$$

- ► Can always accommodate Φ_U only couples to up-type quarks, Φ_D only to down-type quarks and charged leptons
- ► PQ symmetry softly broken ⇒ mixing does not induce FCNCs at tree level
- ► Loop effects: H^{\pm} too heavy to give important effects in $b \rightarrow s\gamma$, etc.

Summary/Outlook

- 4th Generation still not excluded by Higgs searches
- ► Composite 2HDM with light A and heavy (h, H, H^{\pm}) is a natural consequence of fermion condensation
- If new fermions carry color:
 - We will see them soon $(m_{t'} > 450 \text{ GeV})$
 - $\sigma(h, H, A)$ larger than in standard 2HDM
 - ▶ But preferred decay channels are $(h, H) \rightarrow (A, A), (A, Z)$
- If new fermions colorless, unusual scalar spectrum still hint of fermion condensation